Oxidative addition of Group 14 hydrides to osmium(0), osmium(II) and ruthenium (0) complexes. Crystal structures of $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl] })_{3} \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} *\right.$

George R. Clark, Kevin R. Flower, Clifton E.F. Rickard, Warren R. Roper, David M. Salter and L. James Wright
Department of Chemistry, University of Auckland, Private Bag 92019, Auckland (New Zealand)

(Received March 30, 1993)

Abstract

Treatment of $\mathrm{M}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{HER}_{2} \mathrm{R}^{\prime}\left(\mathrm{M}=\mathrm{Os} ; \mathrm{E}=\mathrm{Si} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph} ; \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{E}=\mathrm{Ge}, \mathrm{Sn} ; \mathrm{R}=\mathrm{R}^{\prime}=p\right.$-tolyl; $\mathrm{M}=\mathrm{Ru} ; \mathrm{E}=\mathrm{Ge}, \mathrm{Sn} ; \mathrm{R}=\mathrm{R}^{\prime}=p$-tolyl) affords the corresponding oxidative addition products $\mathrm{M}\left(\mathrm{ER}_{2} \mathrm{R}^{\prime}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1}-\mathbf{8})$. The crystal structures of two complexes, $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2)$ and $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl1 })_{3} \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)\right.$ have been determined. Reaction between HSnMe_{3} and any one of the following compounds, $\mathrm{OsHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{Os}(\mathrm{Ph}) \mathrm{X}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{X}=\mathrm{I}$, $\mathrm{Cl}), \mathrm{Os}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, yields the osmium(IV) complex $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(9)$. Determinations of T_{1} suggest that the hydride ligands in 9 are coordinated in the classical manner rather than as η^{2}-dihydrogen.

1. Introduction

A large number of complexes containing heavier Group 14 element-transition metal bonds is known [1-3]. General methods for the preparation of these complexes include: (i) elimination of small molecules such as hydrogen, amines or alcohols in various condensation processes, (ii) insertion of a low valent Group 14 compound into either a transition metal-metal bond or a transition metal-halide bond, and (iii) oxidative addition of an $\mathrm{E}-\mathrm{X}$ bond (where X can be carbon, halide or hydride) to a low oxidation state transition metal precursor [4-10].

We are currently interested in the synthesis and reactivity of osmium and ruthenium complexes containing heavier Group 14 elements [11-14]. In this paper we report the oxidative additions of heavier Group 14 element hydrides to low oxidation state osmium and ruthenium precursors, together with the single crystal

[^0]X-ray structure determinations of $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl] }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$.

2. Results and discussion

2.1. Reaction of Group 14 hydrides with ruthenium (0) and osmium (0) complexes

Reaction of the compounds $\mathrm{M}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{HER}_{2} \mathrm{R}^{\prime}\left(\mathrm{M}=\mathrm{Os} ; \mathrm{E}=\mathrm{Si}, \mathrm{R}=\mathbf{R}^{\prime}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph} ; \mathrm{R}=\right.$ $\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{E}=\mathrm{Ge}, \mathrm{Sn} ; \mathrm{R}=\mathrm{R}^{\prime}=p$-tolyl; $\mathrm{M}=\mathrm{Ru} ; \mathrm{E}$ $=\mathrm{Ge}, \mathrm{Sn} ; \mathrm{R}=\mathrm{R}^{\prime}=p$-tolyl) affords the oxidative addition products $\mathrm{M}\left(\mathrm{ER}_{2} \mathrm{R}^{\prime}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1 - 8})$ in good yield. With the exception of compound 4 all of the spectral data are consistent with these compounds having structures similar to those determined by X-ray crystallography for 2 and. 6, i.e. Fig. 1, 4A. Although the major isomer (ca. 60%) of compound 4 has this structure, the spectral data also show the presence of a second isomer, 4B (ca. 40\%). The data indicate that this isomer has the structure shown in Fig. 1, 4B.
The IR spectra (Table 1) of compounds $1-8$ all show a medium intensity band in the region 2003-2041 cm^{-1} which is assigned as $\nu(\mathrm{Os}-\mathrm{H})$. In addition, the

4A

4B

Fig. 1. Geometries of the two isomers of compound 4.
spectra all show a strong, single $\nu(\mathrm{C} \equiv \mathrm{O})$ band in the region $1920-1950 \mathrm{~cm}^{-1}$, which is consistent with the complexes containing two mutually trans carbonyl ligands. Otner bands which have been assigned to the ancillary ligands are listed in Table 1.

In the ${ }^{1} \mathrm{H}$ NMR spectra of the compounds $\mathbf{1 - 8}$ (see Table 2) the transition metal hydride resonance appears as a high field doublet of doublets. This is consistent with the two triphenylphosphine ligands being mutually cis. The ${ }^{2} J\left(\mathrm{P}_{\text {trans }}-\mathrm{H}\right)$ values range between 27 and 58 Hz . These values are low compared with the ${ }^{2} J\left(\mathrm{P}_{\text {trans }}-\mathrm{H}\right)$ values typically observed for related compounds [15]. In contrast, the ${ }^{2} J\left(\mathrm{P}_{\text {cis }}-\mathrm{H}\right)$ values range between 17 and 23 Hz and these are typical for this coupling pathway. The low values of the ${ }^{2} J\left(\mathrm{P}_{\text {trans }}-\mathrm{H}\right)$ coupling can be understood upon inspection of the crystal structures of 2 and 6. We assume that the hydride ligand (which was not located by X-ray crystallography) is coordinated in the equatorial plane, between $\mathrm{P}(2)$ and the Group 14 element in both structures. Both structures show large distortions from ideal octahedral geometry, with the three bulky groups redistributing themselves in the equatorial plane such as to minimize interligand repulsions. A consequence of this is that the hydride ligand is not placed directly trans to

TABLE 1. IR data ${ }^{\text {a }}$ for the complexes $\mathbf{M}\left(\mathrm{ER}_{2} \mathrm{R}^{\prime}\right) \mathbf{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

Complex	$\boldsymbol{\nu (M - H)}$	$\boldsymbol{\nu (\mathrm { C } (\mathrm { O })}$	Other bands
$\mathbf{1}$	2012	1929	835^{b}
	2003		828^{l}
$\mathbf{2}$	2030	1925	999^{b}
	2013		
$\mathbf{3}$	2021	1936	
$\mathbf{4 A}$	2017	1950	
$\mathbf{4 B}$		1984,1912	
$\mathbf{5}$	2037	1946	797^{c}
$\mathbf{6}$	2028	1940	802^{c}
$\mathbf{7}$	2038	1950	798^{c}
$\mathbf{8}$	2041	1938	802^{c}
$\mathbf{9}$	2026	1946	875^{d}
	1907		

[^1]a phosphine ligand, thus lowering the value of the ${ }^{2} J\left(\mathrm{P}_{\text {trans }}-\mathrm{H}\right)$ coupling constant.

The silicon hydride resonance for compound 4 appears as a doublet, rather than the expected doublet of doublets. Apparently the coupling constant to one phosphorus atom is very small and not observed. The three bond coupling constant value, ${ }^{3} J(\mathrm{P}-\mathrm{H})$, is probably dependent upon the rotational orientation of the silyl group and one of the coupling pathways may be unfavourable for the preferred silyl group orientation. All other resonances are as expected.

The ${ }^{13} \mathrm{C}$ NMR spectra of 2, 3, 4 and 6 (Table 3) all show the carbonyl resonance as an apparent triplet rather than the expected doublet of doublets arising from coupling to two inequivalent triphenylphosphine ligands. This must be because the values ${ }^{2} J\left(\mathrm{P}_{1}-\mathrm{C}\right)$ and ${ }^{2} J\left(\mathrm{P}_{2}-\mathrm{C}\right)$ are very similar. In the spectra for all the compounds the triphenylphosphine carbon resonances appear as doublets confirming the cis orientation of the phosphine ligands. The phosphorus resonances in the ${ }^{31} \mathrm{P}$ NMR spectra (Table 4) all appear as two

TABLE 2. ${ }^{1} \mathrm{H}$ NMR data ${ }^{\mathrm{a}}$ for the complexes $\mathrm{M}\left(\mathrm{ER}_{2} \mathbf{R}^{\prime}\right)$ $\mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

Complex	${ }^{1} \mathrm{H}$ NMR data
1	$\left.\begin{array}{l} -9.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Os}-H, J(\mathrm{HP})=39.33 ; J(\mathrm{HP})=23.43) ; \\ 0.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH} \end{array}\right) ; 7.26-7.79(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}-H) .$
2	$\begin{aligned} & -9.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{H}, J(\mathrm{HP})=38.10 ; J(\mathrm{HP})=22.10) ; \\ & 1.26-1.31\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{SiCH} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \\ & 6.8-7.45(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}-H) . \end{aligned}$
3	$\begin{aligned} & -8.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Os}-H, J(\mathrm{HP})=38.46 ; J(\mathrm{HP})=22.37) ; \\ & 5.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 6.95-7.50(\mathrm{~m}, 45 \mathrm{H}, \mathrm{Ph}-H) . \end{aligned}$
4A	$\begin{aligned} & -9.12(\mathrm{dd}, \mathrm{Os}-H, J(\mathrm{HP})=37.8 ; J(\mathrm{HP})=20.19) ; \\ & 5.05(\mathrm{~d}, \mathrm{Si} H, J(\mathrm{HP})=7.1 ; 6.95-7.85(\mathrm{~m}, \mathrm{Ph}-H) . \end{aligned}$
4B	$\begin{aligned} & -6.89(\mathrm{t}, \mathrm{Os}-H, J(\mathrm{HP})=21.09) ; \\ & 4.88(\mathrm{dd}, \mathrm{Si} H, J(\mathrm{HP})=17.57, J(\mathrm{HP})=4.93) \text {; } \\ & 6.95-7.85(\mathrm{~m}, \mathrm{Ph}-H) . \end{aligned}$
5	$\begin{aligned} & -8.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ru}-H, J(\mathrm{HP})=58.33, J(\mathrm{HP})=20.75) ; \\ & 5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 2.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) ; \\ & 6.89-7.55(\mathrm{~m}, 42 \mathrm{H}, \mathrm{Ph}-H) . \end{aligned}$
6	$\begin{aligned} & -9.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{H}, \mathrm{~J}(\mathrm{HP})=40.12 ; J(\mathrm{HP})=20.93) ; \\ & 2.82\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) ; 5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \\ & 6.76-7.21(\mathrm{~m}, 42 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) . \end{aligned}$
7	$\begin{aligned} & -8.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ru}-H, J(\mathrm{HP})=27.4, J(\mathrm{HP})=19.5) \\ & 2.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3}\right) ; 5.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \\ & 6.85-7.36(\mathrm{~m}, 42 \mathrm{H}, \mathrm{Ph}-H) . \end{aligned}$
8	$\begin{aligned} & -9.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{H}, \mathrm{~J}(\mathrm{HP})=37.8 ; J(\mathrm{HP})=21.3) ; \\ & 2.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{3}\right) ; 5.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \\ & 6.60-7.30(\mathrm{~m}, 42 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) . \end{aligned}$
$9{ }^{\text {b }}$	$\begin{aligned} & -8.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Os}-\mathrm{H}) \\ & 0.186(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SnCH}, \\ & 7.14-7.26(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}-H) \end{aligned}$

${ }^{\text {a }}$ Spectra recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. Chemical shifts (δ) are given in ppm and are referenced to $\mathrm{Me}_{4} \mathrm{Si}(\delta=0.00)$. Coupling constants (J) are in Hz . Splitting patterns and line shapes are indicated thus: $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet, $\mathrm{t}=$ triplet, $\mathbf{b}=$ broad. ${ }^{\text {b }}$ Chemical shifts referenced to CHCl_{3} impurity in CDCl_{3} ($\delta=7.26$).

TABLE 3. ${ }^{13} \mathrm{C}$ NMR data ${ }^{\text {a }}$ for the complexes $\mathrm{Os}\left(\mathrm{ER}_{2} \mathrm{R}^{\prime}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$

Complex	${ }^{13} \mathrm{C}$ NMR data
2	$\left.\begin{array}{l} 193.60(\mathrm{t}, \mathrm{C}=\mathrm{O}, J(\mathrm{PC})=8.0) ; 137.96(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC}) 42.86) ; \\ 137.32(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=40.86 ; 133.45(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=11.37) ; \\ 133.25(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=11.47 ; 129.02(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) 127.81 \\ (\mathrm{d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=9.86) ; 127.66(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=9.67) ; \\ 11.34(\mathrm{~s}, \mathrm{SiCH} \end{array}\right)^{\mathrm{b}} ; 9.49\left(\mathrm{~s}, \mathrm{Si}-\mathrm{CH}_{2} C \mathrm{CH}_{3}\right)^{\mathrm{b}} .$
3	$\begin{aligned} & 192.15(\mathrm{t}, \mathrm{C}=\mathrm{O}, J(\mathrm{PC})=8.5) ;\left(\mathrm{SiPh}_{3}\right)=145.16(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; \\ & 136.55(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; 126.82(s, \mathrm{Ph}-\mathrm{C}) ; 126.56(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; \\ & \left(\mathrm{PPh}_{3}\right)=136.99(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=45.17) ; 136.09(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=42.66) ; \\ & 133.49(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=11.37) ; 133.32(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=11.37) ; \\ & 129.47(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; 129.36(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; 127.91(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=9.96) ; \\ & 127.69(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=9.75) . \end{aligned}$
4A	189.95 (t, C=O, $J(\mathrm{PC})=8.70)$; 144.82-126.28 (m, Ph-C).
4B	$\begin{aligned} & 186.89\left(\mathrm{dd}, \mathrm{C}=\mathrm{O}, J\left(\mathrm{P}_{\text {cis }}-\mathrm{C}\right)=9.74,3.79\right) ; \\ & 184.29\left(\mathrm{dd}, \mathrm{C}=0, J\left(\mathrm{P}_{i \text { rans }}-\mathrm{C}\right)=74.7\right. \\ & \left(J\left(\mathrm{P}_{\text {cis }}-\mathrm{C}\right)=6.54\right) ; 144.82-126.28(\mathrm{~m}, \mathrm{Ph}-\mathrm{C}) . \end{aligned}$
6	$\begin{aligned} & 190.65(\mathrm{t}, \mathrm{C=O}, J(\mathrm{PC})=8.63) ;\left(\mathrm{Ge}[p \text {-tolyl }]_{3}\right)=143.35(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; \\ & 135.34(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; 127.60(\mathrm{Ph}-\mathrm{C}) ;(\mathrm{PPh} \\ & 45.38) ; 136.21(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=41.15) ; 133.44(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC}) \\ & =10.56) ; 133.13(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=10.67) ; 129.24(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; \\ & 128.93(\mathrm{~s}, \mathrm{Ph}-\mathrm{C} ; 127.6-127.02(\mathrm{~m}, \mathrm{Ph}-\mathrm{C}) . \end{aligned}$
9	136.64 (ds, $\mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=44.59$); 133.99 (d, Ph-C, $J(\mathrm{PC})=10.72$); $129.70(\mathrm{~s}, \mathrm{Ph}-\mathrm{C}) ; 127.84(\mathrm{~d}, \mathrm{Ph}-\mathrm{C}, J(\mathrm{PC})=9.56) ; 3.66\left(\mathrm{~s}, \mathrm{Sn}-\mathrm{CH}_{3}\right)$.

${ }^{\text {a }}$ Spectra recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. Chemical shifts (δ) are given in ppm and are referenced to $\mathrm{CDCl}_{3}(\delta=77.00$). Coupling constants (J) are in Hz . Splitting patterns are indicated thus: $\mathrm{t}=$ triplet, $\mathrm{s}=$ singlet, $\mathbf{d}=$ doublet, $\mathrm{m}=$ multiplet. ${ }^{\mathrm{b}}$ Assignments made using DEPT 135 pulse sequence.
doublets. This pattern is also consistent with the presence of inequivalent, cis phosphine ligands.

The minor isomer of the compound $\mathrm{Os}\left(\mathrm{SiPh}_{2} \mathrm{H}\right)$ $\mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(4)$ has been assigned the geometry 4 B shown in Fig. 1 on the basis of spectral data. The IR spectrum shows two equally intense carbonyl bands at 1984 and $1912 \mathrm{~cm}^{-1}$ indicating the presence of mutually cis carbonyl ligands. In the ${ }^{31} \mathrm{P}$ spectrum, the phosphorus resonances appear as two doublets indicat-

TABLE 4. ${ }^{31} \mathbf{P}$ NMR data ${ }^{a}$ for the complexes $\operatorname{Os}\left(\mathbf{E R}_{\mathbf{2}} \mathbf{R}^{\prime}\right) \mathbf{H}$ $(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$

Complex	${ }^{31} \mathrm{P}$ NMR data
$\mathbf{1}$	$5.50(\mathrm{~d}, J(\mathrm{PP})=10.02)$
	$4.31(\mathrm{~d}, J(\mathrm{PP})=10.02)$
$\mathbf{2}$	$4.21(\mathrm{~d}, J(\mathrm{PP})=6.90)$
	$3.77(\mathrm{~d}, J(\mathrm{PP})=6.90)$
$\mathbf{3}$	$2.81(\mathrm{~d}, J(\mathrm{PP})=6.83)$
	$1.36(\mathrm{~d}, J(\mathrm{PP})=7.41)$
$\mathbf{4 A}$	$5.50(\mathrm{~d}, J(\mathrm{PP})=8.39)$
	$3.58(\mathrm{~d}, J(\mathrm{PP})=8.39)$
$\mathbf{4 B}$	$9.31(\mathrm{~d}, J(\mathrm{PP})=24.36)$
	$3.89(\mathrm{~d}, J(\mathrm{PP})=24.36)$
$\mathbf{9}$	$7.96(\mathrm{bs})$
	$1.43(\mathrm{bs})$

[^2]ing inequivalent cis triphenylphosphine ligands. In the ${ }^{1} \mathrm{H}$ NMR spectrum the hydride appears as an apparent triplet at high-field (${ }^{2} J(\mathrm{P}-\mathrm{H}) 21.09 \mathrm{~Hz}$). This is consistent with the hydride ligand being cis to both triphenylphosphine ligands, where the two $J(\mathrm{P}-\mathrm{H})$ values are very similar. The silicon hydride resonance appears as a doublet of doublets with ${ }^{3} J\left(\mathrm{P}_{\text {trans }}-\mathrm{H}\right) 17.57$ and ${ }^{3} J\left(\mathrm{P}_{c i s}-\mathrm{H}\right) 4.93 \mathrm{~Hz}$. The ${ }^{13} \mathrm{C}$ NMR spectrum shows the presence of two different carbonyl ligands, each appearing as the expected doublet of doublets. For the CO which is trans to one phosphine ligand and cis to the other, the ${ }^{2} J(P-C)$ coupling constants are 74.7 and 6.54 Hz . The carbonyl ligand cis to both phosphines has ${ }^{2} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ coupling constant values of 9.74 and 3.79 Hz respectively.

Attempts were made to prepare the analogous ruthenium silyl complexes via oxidative addition of silanes to $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$. These reactions did not yield silyl-containing products, but instead $\mathrm{RuH}_{2}-$ $(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ was obtained.

Preliminary investigations of the reactivity of $1-8$ towards electrophilic reagents such as HCl and I_{2} were carried out in an attempt to substitute the metal hydride for a halide and/or introduce functionality at the Group 14 element via alkyl group cleavage. However, these reactions did not occur and the outcome was loss of the Group 14 moiety. Thus further elaboration of $1-8$ by these routes could not be achieved.

(a)

(b)

Compounds a and b not isolated
Scheme 1. Postulated mechanism for the formation of $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2}-$ $\mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(9)$.

2.2. Reactions of HSnMe_{3} with osmium (II) complexes

Reaction of either $\mathrm{Os}(\mathrm{Ph}) \mathrm{X}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ or $\mathrm{Os}(\mathrm{Si}-$ $\left.\mathrm{Me}_{2} \mathrm{Cl}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ with two equivalents of HSnMe_{3} gives $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (9) in good yield, with no unchanged osmium precursor remaining. Reaction with less than two equivalents of HSnMe_{3} also gives 9, but in reduced yield. Three equivalents of HSnMe_{3} are required to produce 9 in good yield from $\mathrm{OsHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, possibly because one equivalent of HCl is reductively eliminated during the reaction and this reacts rapidly with HSnMe_{3} to give ClSnMe_{3} and $\mathrm{H}_{2}(\mathrm{~g})$.

The proposed reaction pathway for these reactions is shown in Scheme 1. Initially the HSnMe_{3} oxidatively adds to the osmium(II) complexes to give intermediate (a), which then reductively eliminates XCl to afford intermediate (b). Intermediate (b) then reacts with the second equivalent of HSnMe_{3} to yield 9. The stoichiometry of the reaction between HSnMe_{3} and either $\mathrm{Os}(\mathrm{Ph}) \mathrm{X}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ or $\mathrm{Os}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, together with the fact that the product 9 has two stannyl ligands and is formed in good yield, suggests that at no time is a stannyl group reductively eliminated in these reactions. Since Product 9 is formed even with less than two equivalents of HSnMe_{3}, it can be concluded that intermediate (b) reacts faster with HSnMe_{3} than do any of the starting complexes.

The IR spectrum of 9 (Table 1) shows two medium intensity bands at 2026 and $1907 \mathrm{~cm}^{-1}$ which are assigned as $\nu(\mathrm{Os}-\mathrm{H})$; there is also a strong $\nu(\mathrm{C}=\mathrm{O})$ at $1946 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 2) shows resonances for the phenyl, methyl and hydride groups
with relative integrals of $30: 18: 2$ respectively. The high-field hydride resonance appears as a broad triplet and T_{1} measurements made at 248 and 298 K gave relaxation times of 305 and 706 ms , respectively, indicating that the two hydrogens are best considered as classical hydride ligands rather than as η^{2}-dihydrogen bonded [16].

The ${ }^{31} \mathrm{P}$ NMR spectrum of 9 at room temperature shows two broad phosphorus resonances, indicating that the phosphine ligands are not mutually trans. No coupling could be resolved. The ${ }^{13} \mathrm{C}$ NMR spectrum shows the triphenylphosphine carbon resonances as doublets, again indicating that the phosphine ligands are not arranged trans.

Compound 9 is remarkably stable. Preliminary investigations aimed at inducing reductive elimination of dihydrogen from 9 proved unsuccessful, as did attempts to introduce functionality selectively at the tin centre through reactions with electrophilic reagents such as HCl and I_{2}.

2.3. Structures of $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}\left(\mathrm{CO}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right.$ and $\mathrm{Os}(\mathrm{Ge}$ -[p-tolyl] $\left.{ }_{3}\right) \mathrm{H}\left(\mathrm{CO}_{2}\right)_{\left(\mathrm{PPh}_{3}\right)_{2}}$

Single crystal X-ray structure determinations were carried out for $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (2) and $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6). The hydrogen atoms were not located in either structure. The molecular geometries of these compounds are depicted in Figs. 2 and 3 respectively. Important bond angles and bond lengths are listed in Tables 5-8.

Both structures are best described as highly distorted octahedra. The two carbonyl ligands are essen-

Fig. 2. Molecular structure of $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2)$.

Fig. 3. Molecular structure of $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)$.
tially trans with the angle $\mathrm{C}-\mathrm{Os}-\mathrm{C}$ for $2,167.2(2)^{\circ}$ and for 6, 169.3(2) ${ }^{\circ}$. If the CO ligands are taken as occupying the axial positions in the octahedron, then the two phosphines, the Group 14 ligand and the hydride occupy the equatorial plane in both compounds. Although the hydride was not located in either structural determination, it is reasonable to assume that it is coordinated in the equatorial plane between $\mathrm{P}(2)$ and the Group 14 element, and this is supported by the

TABLE 5. Interatomic distances $(\AA \AA)$ for $\mathrm{Os}_{\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}}$ (2)

$\mathbf{P}(1)-\mathrm{Os}$	$2.397(1)$	$\mathrm{C}(24)-\mathrm{C}(23)$	$1.360(12)$
$\mathrm{P}(2)-\mathrm{Os}$	$2.381(1)$	$\mathrm{C}(25)-\mathrm{C}(24)$	$1.3711(12)$
$\mathrm{Si}-\mathrm{Os}$	$2.493(2)$	$\mathrm{C}(26)-\mathrm{C}(25)$	$1.370(9)$
$\mathrm{C}(1)-\mathrm{Os}$	$1.921(5)$	$\mathrm{C}(32)-\mathrm{C}(31)$	$1.374(8)$
$\mathrm{C}(2)-\mathrm{Os}$	$1.910(6)$	$\mathrm{O}(36)-\mathrm{C}(31)$	$1.385(8)$
$\mathrm{C}(11)-\mathrm{P}(1)$	$1.842(5)$	$\mathrm{C}(33)-\mathrm{C}(32)$	$1.397(9)$
$\mathrm{C}(21)-\mathrm{P}(1)$	$1.850(5)$	$\mathrm{C}(34)-\mathrm{C}(33)$	$1.364(10)$
$\mathrm{C}(31)-\mathrm{P}(1)$	$1.853(5)$	$\mathrm{C}(35)-\mathrm{C}(34)$	$1.360(9)$
$\mathrm{C}(41)-\mathrm{P}(2)$	$1.831(6)$	$\mathrm{C}(36)-\mathrm{C}(35)$	$1.390(8)$
$\mathrm{C}(51)-\mathrm{P}(2)$	$1.840(6)$	$\mathrm{C}(42)-\mathrm{C}(41)$	$1.386(9)$
$\mathrm{C}(61)-\mathrm{P}(2)$	$1.838(5)$	$\mathrm{C}(46)-\mathrm{C}(41)$	$1.374(9)$
$\mathrm{C}(3)-\mathrm{Si}$	$1.894(7)$	$\mathrm{C}(43)-\mathrm{C}(42)$	$1.381(10)$
$\mathrm{C}(5)-\mathrm{Si}$	$1.878(8)$	$\mathrm{C}(44)-\mathrm{C}(43)$	$1.409(13)$
$\mathrm{C}(7)-\mathrm{Si}$	$1.893(9)$	$\mathrm{C}(45)-\mathrm{C}(44)$	$1.360(13)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.134(6)$	$\mathrm{C}(46)-\mathrm{C}(45)$	$1.386(10)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.137(7)$	$\mathrm{C}(52)-\mathrm{C}(51)$	$1.395(8)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.535(9)$	$\mathrm{C}(56)-\mathrm{C}(51)$	$1.385(9)$
$\mathrm{C}(8)-\mathrm{C}(7)$	$1.492(13)$	$\mathrm{C}(54)-\mathrm{C}(53)$	$1.366(12)$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.391(8)$	$\mathrm{C}(55)-\mathrm{C}(54)$	$1.368(12)$
$\mathrm{C}(16)-\mathrm{C}(11)$	$1.382(9)$	$\mathrm{C}(56)-\mathrm{C}(55)$	$1.379(10)$
$\mathrm{C}(13)-\mathrm{C}(12)$	$1.394(8)$	$\mathrm{C}(62)-\mathrm{C}(61)$	$1.400(8)$
$\mathrm{C}(14)-\mathrm{C}(13)$	$1.370(11)$	$\mathrm{O}(66)-\mathrm{C}(61)$	$1.388(7)$
$\mathrm{C}(15)-\mathrm{C}(14)$	$1.372(12)$	$\mathrm{C}(63)-\mathrm{C}(62)$	$1.383(8)$
$\mathrm{C}(16)-\mathrm{C}(5)$	$1.391(9)$	$\mathrm{C}(64)-\mathrm{C}(63)$	$1.369(9)$
$\mathrm{C}(22)-\mathrm{C}(21)$	$1.370(9)$	$\mathrm{C}(65)-\mathrm{C}(64)$	$1.368(9)$
$\mathrm{C}(23)-\mathrm{C}(22)$	$1.407(10)$		

TABLE 6. Interatomic distances for $\mathrm{Os}\left(\mathrm{Ge}[\mathrm{p} \text {-tolyl] }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6)

Ge-Os	$2.5600(3)$	C(36)-C(35)	1.395(8)
$\mathrm{P}(1)$-Os	$2.3955(8)$	C(42)-C(41)	1.378(7)
$\mathrm{P}(2)-\mathrm{Os}$	2.3856(9)	$\mathrm{C}(46)-\mathrm{C}(41)$	1.382(7)
$\mathrm{C}(1)-\mathrm{Os}$	1.916(5)	C(43)-C(42)	$1.382(6)$
$\mathrm{C}(2)-\mathrm{Os}$	1.903(6)	$\mathrm{C}(44)-\mathrm{C}(43)$	1.395 (10)
C(11)-Ge	$1.981(4)$	$\mathrm{C}(45)-\mathrm{C}(44)$	1.364(8)
C(21)-Ge	1.985(4)	$\mathrm{O}(46)-\mathrm{C}(45)$	$1.398(6)$
C(31)-Ge	1.974(5)	C(52)-C(51)	$1.393(6)$
$\mathrm{C}(41)-\mathrm{P}(1)$	1.835(4)	C(56)-C(51)	1.382(9)
C(51)-P(1)	1.838(5)	C(53)-C(52)	$1.364(8)$
C(61)-P(1)	1.841(5)	C(54)-C(53)	1.383(11)
C(71)-P(2)	1.840(5)	C(55)-C(54)	1.351(9)
C(81)-P(2)	1.850(5)	C(56)-C(55)	1.383(10)
C(91)-P(2)	1.836(5)	C(62)-C(61)	1.373(6)
C(3)-C(11)	1.79(2)	C(66)-C(61)	$1.385(7)$
$\mathrm{C}(3)-\mathrm{C}(12)$	1.64(2)	C(63)-C(62)	$1.386(8)$
C(1)-O(1)	1.140 (6)	C(64)-C(63)	1.372 (8)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.165(8)	C(65)-C(64)	$1.360(8)$
C(12)-C(11)	$1.391(5)$	C(66)-C(65)	1.382(10)
C(16)-C(11)	$1.380(6)$	C(72)-C(71)	1.404(8)
C(13)-C(12)	1.381(7)	C(76)-C(71)	1.367 (6)
O(14)-C(13)	$1.379(7)$	C(73)-C(72)	1.408(8)
$\mathrm{C}(15)-\mathrm{C}(14)$	$1.370(7)$	C(74)-C(73)	1.376(9)
C(17)-C(14)	1.507(8)	C(75)-C(74)	$1.387(11)$
$\mathrm{C}(16)-\mathrm{C}(15)$	1.399(7)	C(76)-(475)	1.365(9)
$\mathrm{C}(22)-\mathrm{C}(21)$	1.394(6)	C(82)-C(81)	1.376(6)
C(26)-C(21)	1.398(7)	C(86)-C(81)	$1.374(7)$
$\mathrm{C}(23)-\mathrm{C}(22)$	1.361(6)	C(83)-C(82)	1.373(9)
$\mathrm{C}(24)-\mathrm{C}(23)$	1.392(7)	C(84)-C(83)	$1.374(9)$
C(25)-C(24)	1.382(7)	C(85)-C(84)	$1.380(8)$
$\mathrm{C}(27)-\mathrm{C}(24)$	1.520(8)	C(86)-C(85)	$1.377(8)$
C(26) C(25)	1.368(7)	C(92)-C(91)	1.391(9)
C(32)-C(31)	1.376(8)	$\mathrm{C}(96)+\mathrm{C}(91)$	1.393(8)
C(36)-C(31)	$1.397(5)$	C(93)-C(92)	1.395(10)
C(33)-C(32)	1.394(9)	C(94)-C(93)	1.375(12)
C(34)-C(33)	$1.378(7)$	C(95)-C(94)	1.349(12)
C(35)-C(34)	1.368(10)	C(96)-C(95)	1.370(9)
C(37)-C(34)	1.537(10)		

spectroscopic evidence. The angles between the two phosphines and between each of the phosphines and the Group 14 ligand are all greater than 90°. Thus for 2, $\mathrm{P}(1)-\mathrm{Os}-\mathrm{Si}=105.0(1)^{\circ}, \mathrm{P}(2)-\mathrm{Os}-\mathrm{Si}=147.3(1)^{\circ}$ and $\mathrm{P}(1)-\mathrm{Os}-\mathrm{P}(\mathrm{s})=107.0(1)^{\circ}$ and for $6 \mathrm{P}(1)-\mathrm{Os}-\mathrm{Ge}=$ $99.90(2)^{\circ}, \mathrm{P}(2)-\mathrm{Os}-\mathrm{Ge}=152.59(2)^{\circ}$ and $\mathrm{P}(2)-\mathrm{Os}-\mathrm{P}(1)$ $=106.17(3)^{\circ}$. Both structures, like other reported Group 14 alkyl and aryl containing complexes, show deviation from tetrahedral geometry about the Group 14 elements. The Os-E-C bond angles open to around 114° and the $\mathrm{C}-\mathrm{E}-\mathrm{C}$ bond angles close to $c a .103^{\circ}$. All other bond angles appear normal. The Os-Si bond length in 2 is 2.493(2) \AA and this is the longest $\mathrm{Os}-\mathrm{Si}$ distance yet reported [17-19]. The $\mathrm{Os}-\mathrm{Ge}$ bond length is $2.5600(3) \AA$. This is the first Os-Ge distance to be reported, and it is close to the value of $2.55 \AA$ predicted from the sum of the covalent radii of Os and Ge
[20]. All other bond lengths in the two compounds appear to fall in the expected ranges.

3. Experimental details

All reactions were carried out by use of standard Schlenk techniques under nitrogen. Final recrystallisations were carried out in the open. Benzene, toluene and hexane were each dried over and distilled from sodium benzophenoneketyl; dichloromethane was dried over and distilled from calcium hydride; and methanol was dried over and distilled from magnesium methoxide formed from magnesium turnings. Each solvent was subjected to three freeze-evacuate-thaw cycles before use. The compounds $\mathrm{M}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{M}=\mathrm{Os}, \mathrm{Ru})$ [2], $\mathrm{OsHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ [22], $\mathrm{Os}(\mathrm{Ph}) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ [23],

TABLE 7. Bond angles (deg.) for $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{Ph}_{3}\right)_{2}(2)$

P(2)-Os-P(1)	107.0(1)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{P}(1)$	123.3(5)
$\mathrm{Si}-\mathrm{Os}-\mathrm{P}(1)$	105.0(1)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{P}(1)$	118.2(5)
Si-Os-P(2)	147.3(1)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	118.5(6)
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(1)$	88.8(2)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$119.4(8)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(2)$	100.9(2)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.8(8)
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{Si}$	86.6(2)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	119.4(7)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(1)$	95.1(2)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	119.6(8)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(2)$	89.7(2)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{O}(21)$	122.1(7)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{Si}$	80.7(2)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{P}(1)$	$121.0(4)$
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{C}(1)$	167.2(2)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{P}(1)$	119.9(4)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Os}$	117.8(2)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	119.0(5)
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{Os}$	118.8(2)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	119.3(6)
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(11)$	100.1(3)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	121.5(6)
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{Os}$	115.4(2)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	119.1(6)
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(11)$	101.9(3)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	120.5(6)
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(21)$	99.8(2)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	120.5(5)
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{Os}$	120.7(2)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{P}(2)$	117.7(5)
$\mathrm{C}(51)-\mathrm{P}(2)-\mathrm{Os}$	111.7(2)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{P}(2)$	123.9(5)
C(51)-P(2)-C(41)	100.2(3)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42)$	118.3 (6)
$\mathrm{C}(61)-\mathrm{P}(2)-\mathrm{Os}$	118.2(2)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	121.1(7)
$\mathrm{C}(61)-\mathrm{P}(2)-\mathrm{C}(41)$	101.1(3)	$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42)$	$120.1(8)$
C(61)-P(2)-C(51)	102.1(3)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	118.007)
$\mathrm{C}(3)-\mathrm{Si}-\mathrm{Os}$	109.3(2)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	121.6(8)
$\mathrm{C}(5)-\mathrm{Si}-\mathrm{Os}$	119.3(3)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	120.8(7)
$\mathrm{C}(5)-\mathrm{Si}-\mathrm{C}(3)$	105.4(4)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{P}(2)$	122.3(4)
$\mathrm{C}(7)-\mathrm{Si}-\mathrm{Os}$	114.8(3)	$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{P}(2)$	$120.9(5)$
$\mathrm{C}(7)-\mathrm{Si}-\mathrm{C}(3)$	103.7(4)	C(56)-C(51)-C(52)	116.8(6)
$\mathrm{C}(7)-\mathrm{Si}-\mathrm{C}(5)$	102.9(4)	C(53)-C(52)-C(51)	121.4 (7)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Os}$	177.0(6)	$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(52)$	120.4(8)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Os}$	178.1(5)	C(55)-C(54)-C(53)	118.8(7)
O(4)-C(3)-Si	116.1(6)	C(56)-C(55)-O(54)	121.3(8)
C(6)-C(5)-Si	116.0(7)	C(55)-C(56)-C(51)	121.3(8)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{Si}$	117.2(8)	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{P}(2)$	121.5(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{P}(1)$	117.7(5)	$\mathrm{C}(66)-\mathrm{C}(61)-\mathrm{P}(2)$	119.4(4)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{P}(1)$	123.1(5)	$\mathrm{C}(66)-\mathrm{C}(61)-\mathrm{C}(62)$	119.1(5)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	119.2(5)	C(63)-C(62)-C(61)	119.3(6)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.2(7)	$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(62)$	121.0(6)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.4(7)	$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(63)$	120.2(6)
C(15)-C(14)-C(13)	119.5(6)	$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(64)$	120.1(6)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.1(8)	$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(61)$	120.3(6)
C(15)-C(16)-C(11)	119.7(7)		

TABLE 8. Bond angles for $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)$

P(1)-Os-Ge	99.90(2)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	120.1(6)
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{Ge}$	152.59(2)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	118.9(6)
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{Ge}$	$80.2(1)$	C(37)-C(34)-C(35)	120.8(5)
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(1)$	95.9(1)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	120.6(4)
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(2)$	88.8(1)	C(35)-C(36)-C(31)	121.5(5)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{Ge}$	89.4(1)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{P}(1)$	121.5(4)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(1)$	88.2(2)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{P}(1)$	119.9(3)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(2)$	99.6(1)	O(46)-C(41)-C(42)	118.5(4)
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{C}(1)$	169.3(2)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	120.4(5)
$\mathrm{C}(11)-\mathrm{Ge}-\mathrm{Os}$	110.6(1)	$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42)$	120.8(5)
$\mathrm{C}(21)-\mathrm{Ge}-\mathrm{Os}$	114.3(1)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	119.1(5)
$\mathrm{C}(21)-\mathrm{Ge}-\mathrm{C}(11)$	102.0(2)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	119.8(5)
$\mathrm{C}(31)-\mathrm{Ge}-\mathrm{Os}$	119.8(1)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	121.3(5)
$\mathrm{C}(31)-\mathrm{Ge}-\mathrm{C}(11)$	101.4(2)	C(52)-C(51)-P(1)	119.9(4)
$\mathrm{O}(31)-\mathrm{Ge}-\mathrm{C}(21)$	106.5(2)	$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{P}(1)$	122.0(3)
$\mathrm{C}(41)-\mathrm{P}(1)-\mathrm{Os}$	117.2(2)	$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(52)$	118.0(5)
$\mathrm{C}(51)-\mathrm{P}(1)-\mathrm{Os}$	115.1(2)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	120.9(5)
$\mathrm{C}(51)-\mathrm{P}(1)-\mathrm{C}(41)$	99.7(2)	$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(52)$	120.0(5)
C(61)-P(1)-Os	115.8(1)	C(55)-C(54)-C(53)	120.1(7)
$\mathrm{C}(61)-\mathrm{P}(1)-\mathrm{C}(41)$	101.7(2)	C(56)-C(55)-C(54)	120.3(7)
C(61)-P(1)-C(51)	105.3(2)	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(51)$	120.7(5)
$\mathrm{C}(71)-\mathrm{P}(2)-\mathrm{Os}$	120.3(2)	C(62)-C(61)-P(1)	117.7(4)
$\mathrm{C}(81)-\mathrm{P}(2)-\mathrm{Os}$	119.6(1)	C(66)-C(61)-P(1)	123.7(4)
$\mathrm{C}(81)-\mathrm{P}(2)-\mathrm{C}(71)$	102.6(2)	C(66)-C(61)-C(62)	118.6(5)
$\mathrm{C}(91)-\mathrm{P}(2)-\mathrm{Os}$	109.8(1)	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(61)$	121.0(4)
$\mathrm{C}(91)-\mathrm{P}(2)-\mathrm{C}(71)$	103.0(2)	C(64)-C(63)-C(62)	119.4(5)
$\mathrm{C}(91)-\mathrm{P}(2)-\mathrm{C}(81)$	98.2(2)	C(65)-C(64)-C(63)	120.4(6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Os}$	177.8(4)	$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(64)$	$120.2(6)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Os}$	177.1(4)	$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(61)$	120.4(5)
$\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{C}(11)$	109.8(11)	$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{P}(2)$	116.9(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Ge}$	118.4(3)	$\mathrm{C}(76)-\mathrm{C}(71)-\mathrm{P}(2)$	124.4(4)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{Ge}$	124.8(3)	$\mathrm{C}(76)-\mathrm{C}(71)-\mathrm{C}(72)$	118.6(5)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	116.7(4)	$\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{C}(71)$	119.5(5)
C(13)-C(12)-C(11)	121.7(4)	$\mathrm{C}(74)-\mathrm{C}(73)-\mathrm{C}(72)$	119.7(7)
C(14)-C(13)-C(12)	121.2(4)	C(75)-C(74)-C(73)	$120.2(6)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	117.8(5)	$\mathrm{C}(76)-\mathrm{C}(75)-\mathrm{C}(74)$	119.6(5)
$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{C}(13)$	119.9(4)	$\mathrm{C}(75)-\mathrm{C}(76)-\mathrm{C}(71)$	122.3(6)
C(17)-C(14)-C(15)	122.3(4)	$\mathrm{C}(82)-\mathrm{C}(81)-\mathrm{P}(2)$	121.3(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.2(4)	$\mathrm{C}(86)-\mathrm{C}(81)-\mathrm{P}(2)$	120.1(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	121.3(4)	$\mathrm{C}(86)-\mathrm{C}(81)-\mathrm{C}(82)$	118.6(5)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Ge}$	123.9(3)	C(83)-C(82)-C(81)	120.9(5)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{Ge}$	119.0 (3)	C(84)-C(83)-C(82)	120.2(5)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	116.8(4)	$\mathrm{C}(85)-\mathrm{C}(84)-\mathrm{C}(83)$	119.5(6)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	121.8(4)	$\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{C}(84)$	119.7(6)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	121.1(4)	C(85)-C(86)-C(81)	121.0(4)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	117.6(4)	$\mathrm{C}(92)-\mathrm{C}(91)-\mathrm{P}(2)$	123.4(4)
$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(23)$	120.5(4)	C(96)-C(91)-P(2)	117.7(4)
$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(25)$	121.9(5)	$\mathrm{C}(96)-\mathrm{C}(91)-\mathrm{C}(92)$	118.8(5)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	121.6(5)	C(93)-C(92)-C(91)	119.2(6)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	121.1(4)	C(94)-C(93)-C(92)	120.1(8)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{Ge}$	$120.3(3$	C(95)-C(94)-C(93)	120.9(7)
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{Ge}$	123.1(4)	C(96)-C(95)-C(94)	120.17)
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	116.4(5)	$\mathrm{C}(95)-\mathrm{C}(96)-\mathrm{C}(91)$	120.9(6)
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	122.4(4)		

$\mathrm{Os}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ [24], HSiMe_{3} [25], $\mathrm{HGe}(p \text {-tolyl })_{3}$ [26], $\mathrm{HSn}(p \text {-tolyl) })_{3}$ [27] and HSnMe_{3} [28], were prepared by published methods. All other compounds were obtained commercially and used without further purification.

Analytical data were obtained by the Microanalytical Laboratory, University of Otago. IR spectra (4000$400 \mathrm{~cm}^{-1}$) were recorded on a Digilab FTS-7 Spectrophotometer as nujol mulls between KBr plates. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on either a Bruker AM 400 or a Bruker AC 200 in CDCl_{3} and referenced to either tetramethylsilane (0.00 ppm) or residual CHCl_{3} (7.26 ppm). ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AM 400 instrument $\left({ }^{13} \mathrm{C}\right.$ at 100.614 MHz and ${ }^{31} \mathrm{P}$ at 161.978 MHz) and referenced to CDCl_{3} (77.00 ppm) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(0.00 \mathrm{ppm})$ respectively. Melting points (uncorrected) were recorded on a Reichert hot-stage microscope.

3.1. $\mathrm{Os}\left(\mathrm{SiMe}_{3}\right)(\mathrm{H})\left(\mathrm{CO}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{I})\right.$

The complex $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.19 \mathrm{mmol})$ was suspended in toluene ($10 \mathrm{~cm}^{3}$) in a Schlenk tube under nitrogen and an excess of HSiMe_{3} was bubbled through the solution for $c a .10 \mathrm{~s}$. The Schlenk tube was then sealed and irradiated with a 1000 W tungsten/ halogen sun-lamp for 20 min to result in a colourless solution. The solvent volume was then reduced in vacuo to $1 \mathrm{~cm}^{3}$ and hexane ($50 \mathrm{~cm}^{3}$) added to precipitate $\mathrm{Os}\left(\mathrm{SiMe}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (1). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ afforded pure colourless crystals of $1(0.139 \mathrm{~g}, 85 \%)$, m.p. $178-179^{\circ} \mathrm{C}$. Anal. Found: C, 57.51; H, 4.53. $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{OsP}_{2} \mathrm{Si}$ calcd.: $\mathrm{C}, 58.28 ; \mathrm{H}$, 4.77%.

3.2. $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2)$ and analogues

The complex $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.19 \mathrm{mmol})$ was suspended in toluene ($10 \mathrm{~cm}^{3}$) with continuous stirring under a stream of dry nitrogen and HSiEt_{3} ($0.033 \mathrm{~g}, 0.28 \mathrm{mmol}$) was added. After irradiation with a 1000 W tungsten/halogen sun-lamp for 20 min a colourless solution was formed. Reduction of the solvent volume in vacuo to $1 \mathrm{~cm}^{3}$ followed by the addition of hexane ($50 \mathrm{~cm}^{3}$) precipitated the white complex $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (2). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ afforded pure colourless crystals of 2 ($0.143 \mathrm{~g}, 83 \%$), m.p. $139-140^{\circ} \mathrm{C}$. Anal. Found: C, 59.56, $\mathrm{H}, 5.40 . \mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{OsP} \mathrm{P}_{2} \mathrm{Si}$ calcd.: C, $59.58, \mathrm{H}, 5.23 \%$. Crystals suitable for X -ray diffraction were grown by slow diffusion of methanol into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2.

Similarly, $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.19 \mathrm{mmol})$ was treated with $\mathrm{HSiPh}_{3}(0.073 \mathrm{~g}, 0.28 \mathrm{mmol})$ at room temperature to afford the analogous complex, $\mathrm{Os}\left(\mathrm{SiPh}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (3). Recrystallisation of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ yielded pure colourless crystals of $3(0.173 \mathrm{~g}, 77 \%)$, m.p. $175-176^{\circ} \mathrm{C}$. Anal. (as $3 / 2$ dichloromethane solvate, as confirmed by ${ }^{1} \mathrm{H}$ NMR) Found: C, $62.38 ; \mathrm{H}, 4.72 . \mathrm{C}_{56} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Os}-$ $\mathrm{P}_{2} \mathrm{Si} \cdot 3 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calcd.: C, $62.57 ; \mathrm{H}, 4.39 \%$.

Similar treatment of $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.19$ mmol) with $\mathrm{H}_{2} \mathrm{SiPh}_{2}(0.052 \mathrm{~g}, 0.28 \mathrm{mmol})$ at room temperature gave the analogous complex, $\mathrm{Os}\left(\mathrm{SiPh}_{2} \mathrm{H}\right)$ $\mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (4). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / EtOH yielded pure, colourless crystals of $4(0.100 \mathrm{~g}$, 54%), m.p. $192-194^{\circ}$ C. Anal. Found: C, 62.97 ; H, 4.31. $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{OsP}_{2} \mathrm{Si}$ calcd.: C, $62.88 ; \mathrm{H}, 4.43 \%$.

3.3. $\mathrm{Ru}\left(\mathrm{Ge}[\mathrm{p} \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5)$ and analogue

The complex $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.100 \mathrm{~g}, 0.11 \mathrm{mmol})$ was suspended in benzene ($10 \mathrm{~cm}^{3}$) with continuous stirring under a stream of dry nitrogen and $\mathrm{HGe}(p$ tolyl $)_{3}(0.050 \mathrm{~g}, 0.14 \mathrm{mmol})$ was added. After 40 min stirring the solvent volume was reduced in vacuo to 1 cm^{3} and hexane ($50 \mathrm{~cm}^{3}$) added slowly to precipitate colourless crystals of 5 , which on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ afforded pure 5 ($0.052 \mathrm{~g}, 44 \%$), m.p. $184^{\circ} \mathrm{C}$. Anal. (as dichloromethane solvate, as confirmed by ${ }^{1} \mathrm{H}$ NMR) Found: $\mathrm{C}, 63.87$; H, 4.71. $\mathrm{C}_{59} \mathrm{H}_{52} \mathrm{GeO}_{2} \mathrm{P}_{2}-$ $\mathrm{Ru} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calcd.: C, 64.71 ; $\mathrm{H}, 4.88 \%$.

Similarly $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.100 \mathrm{~g}, 0.11 \mathrm{mmol})$ was treated with $\mathrm{HSn}(p \text {-tolyl })_{3}(0.055 \mathrm{~g}, 0.14 \mathrm{mmol})$ at room temperature to afford the analogous complex $\mathrm{Ru}\left(\mathrm{Sn}[p \text {-tolyl) }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (7). Recrystallisation of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$, yielded colourless crystals of pure $7(0.086 \mathrm{~g}, 73 \%)$, m.p. $195^{\circ} \mathrm{C}$. Anal. (as $1 / 2$ dichloromethane solvate, as confirmed by ${ }^{1} \mathrm{H}$ NMR) Found: C, 64.45; H, 4.92. $\mathrm{C}_{59} \mathrm{H}_{52} \mathrm{O}_{2}$ $\mathrm{P}_{2} \mathrm{RuSn} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calcd.: $\mathrm{C}, 63.96 ; \mathrm{H}, 4.78 \%$.

3.4. $\mathrm{Os}\left(\mathrm{Ge}[\mathrm{p} \text {-tolyl] }]_{3}\right) \mathrm{H}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)$ and analogue

To a continuously stirred suspension of $\mathrm{Os}(\mathrm{CO})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{3}(0.150 \mathrm{~g}, 0.14 \mathrm{mmol})$ in benzene ($15 \mathrm{~cm}^{3}$) under a stream of dry nitrogen, was added $\mathrm{HGe}(p$ tolyl $)_{3}(0.060 \mathrm{~g}, 0.17 \mathrm{mmol})$. After irradiation with a 1000 W tungsten/halogen sun-lamp for 20 min a colourless solution had been formed. The solvent volume was then reduced to $1 \mathrm{~cm}^{3}$ in vacuo and hexane ($50 \mathrm{~cm}^{3}$) added to precipitate the white complex 6. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ afforded colourless crystals of pure $\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}$ $\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.104 \mathrm{~g}, 66 \%)$, m.p. $203^{\circ} \mathrm{C}$. Anal. (as dichloromethane solvate, as confirmed by ${ }^{1} \mathrm{H}$ NMR) Found: $\mathrm{C}, 60.38$; $\mathrm{H}, 4.75 . \mathrm{C}_{59} \mathrm{H}_{52} \mathrm{GeO}_{2} \mathrm{OsP}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calcd.: C, $59.91 ; \mathrm{H}, 4.52 \%$. Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ using the vapour diffusion method.

Similarly $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.150 \mathrm{~g}, 0.14 \mathrm{mmol})$ was treated with $\operatorname{HSn}(p \text {-tolyl })_{3}(0.067 \mathrm{~g}, 0.17 \mathrm{mmol})$ at room temperature to afford the analogous complex $\mathrm{Os}\left(\mathrm{Sn}[p \text {-tolyl] }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8)$. Recrystallisation of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ yielded colourless crystals of pure $\mathrm{Os}\left(\mathrm{Sn}[p \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.105 \mathrm{~g}, 60 \%)$, m.p. $219^{\circ} \mathrm{C}$. Anal. (as $1 / 2$
dichloromethane solvate, as confirmed by ${ }^{1} \mathrm{H}$ NMR) Found: C, 59.48; $\mathrm{H}, 4.68 . \mathrm{C}_{59} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{OsP}_{2} \mathrm{Sn} \cdot 1 / 2 \mathrm{CH}_{2}-$ Cl_{2} calcd.: C, $59.24 ; \mathrm{H}, 4.42 \%$.

3.5. $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

Method (i): To a stirred solution of $\mathrm{Os}(\mathrm{Ph}) \mathrm{Cl}-$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(0.400 \mathrm{~g}, 0.467 \mathrm{mmol})$ in benzene $\left(30 \mathrm{~cm}^{3}\right)$ under a stream of dry nitrogen was added HSnMe_{3} ($0.230 \mathrm{~g}, 1.41 \mathrm{mmol}$). After 20 min the solution became colourless and the solvent volume was reduced in vacuo to $2 \mathrm{~cm}^{3}$. Addition of hexane ($50 \mathrm{~cm}^{3}$) precipitated 9. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ afforded pure, colourless crystals of $9(0.300 \mathrm{~g}, 60 \%)$, m.p. $196^{\circ} \mathrm{C}$. Anal. Found: C, $48.96 ; \mathrm{H}, 4.50$. $\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{OOsP}_{2} \mathrm{Sn}_{2}$ calcd.: C, $48.16 ; \mathrm{H}, 4.69 \%$.

Similar reactions between either $\mathrm{Os}(\mathrm{Ph}) \mathrm{I}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)_{2}$ or $\mathrm{Os}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ gave the same complex 9.

Method (ii): To a continuously stirred suspension of $\mathrm{OsHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.192 \mathrm{mmol})$ in benzene ($15 \mathrm{~cm}^{3}$) under a stream of dry nitrogen was added, $\mathrm{HSnMe}_{3}(0.127 \mathrm{~g}, 0.768 \mathrm{mmol})$. The solution was then heated to reflux for 30 min . After cooling of the solution and reduction of the volume to $1 \mathrm{~cm}^{3}$, hexane
$\left(50 \mathrm{~cm}^{3}\right)$ was added to precipitate $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)_{2}$ $\mathrm{H}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (9). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ EtOH afforded pure 9 ($0.150 \mathrm{~g}, 73 \%$).
3.6. X-ray diffraction studies of $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$ (2) and $\mathrm{Os}(\mathrm{Ge}[\mathrm{p}-\mathrm{tolyl}])_{3} \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6)

Crystal data. Details of crystal data and intensity collection parameters are given in Table 9. Unit cell parameters were obtained from least squares fits to the four circle coordinates of 25 reflections determined on a Nonius CAD-4 diffractometer. Intensity data collections used graphite monochromated Mo $\mathrm{K} \boldsymbol{\alpha}$ radiation ($\lambda=0.71069 \AA$) and employed $2 \theta / \omega$ scans with a peak to background count time of $2: 1$. The omega scan angles were $0.80+0.347 \tan \theta$. Reflections were counted for 60 s or until $\sigma(I) / I$ was 0.02 . Three reflections were monitored throughout data collections as checks on crystal alignment and decomposition, no systematic effects being observed. The data sets were corrected for Lorentz, polarisation and absorption [29] effects using locally written programs and equivalent reflections averaged.

TABLE 9. Crystal data for $\mathrm{Os}_{\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2) \text { and } \mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl] }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)}$

	$\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2)$	$\mathrm{Os}\left(\mathrm{Ge}[p \text {-tolyl }]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)$
Formula	$\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{OsP}_{2} \mathrm{Si}$	$\mathrm{C}_{59} \mathrm{H}_{52} \mathrm{GeO}_{2} \mathrm{OsP}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Molecular weight	886.59	1202.66
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / n$	$P \overline{1}$
a	$11.309(1) \AA$	12.260(10) \AA
b	16.343(1) A	12.398(3) A
c	22.441(4) \AA	18.513(5) \AA
$\boldsymbol{\alpha}$	$90.0{ }^{\circ}$	$108.34(2)^{\circ}$
β	$103.14(1)^{\circ}$	99.34(4) ${ }^{\circ}$
$\boldsymbol{\gamma}$	90.0°	$95.75(4)^{\circ}$
V	4039.1(9) ${ }^{\text {A }}{ }^{3}$	2608(2) \AA^{3}
Z	4	2
d (calc)	$1.457 \mathrm{~g} \mathrm{~cm}^{-3}$	$1.490 \mathrm{~g} \mathrm{~cm}^{-3}$
d (obs)		$1.469 \mathrm{~g} \mathrm{~cm}^{-3}$
$F(000)$	1784	$1204{ }^{-1}$
μ	$34.8 \mathrm{~cm}^{-1}$	$47.3 \mathrm{~cm}^{-1}$
Radiation Mo K $\boldsymbol{\alpha}$ (Monochromatic) $\boldsymbol{\lambda}$	0.71069 A	0.71069 A
Temperature	295 K	298 K
Diffractometer	Nonius CAD-4	Nonius CAD-4
Scan technique	$\omega / 2 \theta$	$\omega / 2 \theta$
2θ (min-max)	2-50	$2-60^{\circ}$
No. of unique reflections	8073	11911
No. of observed reflections	6122	10057
Crystal size	$0.12 \times 0.24 \times 0.34 \mathrm{~mm}$	$0.17 \times 0.26 \times 0.37 \mathrm{~mm}$
A (min-max)	1.00-0.62	$1.00-0.68$
Least squares weights	$1.0 /\left[\sigma^{2}(F)+0.006 F^{2}\right]$	$1.62 /\left[\sigma^{2}(F)+0.0009 F^{2}\right]$
Function minimised	$\Sigma \omega\left[\left\|F_{0}\right\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right]^{2}$	$\Sigma \boldsymbol{w}\left[\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right]^{2}$
R and R^{\prime}	0.035, 0.038	0.036, 0.040

The structures were solved by Patterson and difference Fourier techniques and refined by full-matrix least squares [30]. Atomic scattering factors were for neutral atoms [31]. After initial isotropic refinement all atoms were allowed to assume anisotropic motion. Hydrogen atoms were included in calculated positions, assuming a C-H distance of $0.95 \AA$ and allowed to ride
on the atom to which they were bonded with a common thermal parameter. At convergence final shifts were less than 15% of standard deviations and final peaks in difference maps were less than $1 \mathrm{e}^{\AA^{-3}}$, randomly distributed. Final refinement details are included in Table 9. Interatomic distances and atomic coordinates for 2 are given in Tables 5 and 10 respec-

TABLE 10. Atomic coordinates for $\mathrm{Os}\left(\mathrm{SiEt}_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2)$

	\boldsymbol{x}	y	z	$U_{\text {iso }}$
Os	0.69467(2)	0.25617(1)	0.42069(1)	0.03256(12)
P(1)	$0.48330(12)$	$0.27320(8)$	0.41880(6)	0.0346(6)
P(2)	0.80299(12)	0.27662(8)	0.52372(6)	$0.0360 \times 6)$
Si	0.70013(16)	0.20725(11)	0.31615 (7)	0.0479(9)
O(1)	0.6981(4)	$0.4279(2)$	$0.3674(2)$	0.067(3)
O(2)	0.7002(5)	0.0722(2)	0.4431(2)	0.081(3)
C(1)	$0.6960(5)$	$0.3650(3)$	0.3886(2)	0.045(3)
C(2)	0.6962(5)	0.1409(3)	0.4348(2)	0.050(3)
C(3)	0.8258(7)	0.1290(4)	0.3220 (3)	0.070(4)
C(4)	$0.8419(9)$	$0.0925(6)$	0.2613(4)	0.103(7)
C(5)	0.5614(7)	0.1581(5)	0.2673(3)	0.086(5)
C(6)	0.5290(9)	0.0745(6)	0.2878(5)	0.131(9)
C(7)	$0.7400(9)$	$0.2885(5)$	0.2639(3)	$0.091(6)$
C(8)	0.8645(11)	0.3242(7)	0.2811(5)	$0.152(11)$
C(11)	0.3851(5)	0.1821(3)	0.4037(2)	0.045(3)
C(12)	$0.4160(6)$	0.1152(3)	0.4424(3)	0.056(3)
C(13)	0.3420(7)	0.0459(3)	0.4347(3)	0.073(4)
C(14)	0.2381(8)	$0.0434(4)$	0.3893(4)	0.078(5)
C(15)	0.2079(7)	$0.1094(4)$	$0.3510(4)$	0.077(5)
C(16)	0.2804(6)	0.1790(4)	$0.3578(3)$	0.058(3)
C(21)	0.4396 (5)	0.3133(3)	$0.4879(2)$	0.042(2)
C(22)	$0.3529(7)$	$0.2776(4)$	0.5132(3)	0.073(4)
C(23)	$0.3249(8)$	$0.3125(5)$	$0.5656(3)$	0.093(6)
C(24)	0.3803(8)	0.3825(5)	0.5903(3)	0.077(5)
C(25)	$0.4660(7)$	$0.4184(5)$	0.5644(3)	0.075(5)
C(26)	0.4957(6)	0.3828(4)	0.5144(3)	0.062(4)
C(31)	0.4008(5)	$0.3465(3)$	0.3611(2)	0.039(2)
C(32)	0.3019(6)	$0.3889(3)$	0.3706(3)	0.058(3)
C(33)	0.2405(6)	$0.4424(4)$	0.3254(3)	0.070(4)
C(34)	0.2742(6)	$0.4514(4)$	0.2711(3)	0.063(4)
C(35)	0.3723(6)	0.4095(4)	0.2618(3)	0.064(4)
C(36)	0.4355(5)	$0.3564(3)$	0.3062(2)	0.048(3)
C(41)	0.7277(5)	0.2629(3)	0.5871(2)	0.045(2)
C(42)	0.6581(7)	0.1931(4)	0.5871(3)	0.066(4)
O(43)	0.6027(8)	0.1767(6)	$0.6347(4)$	0.086(5)
C(44)	0.6166(9)	0.2313(6)	0.6844(4)	0.097(6)
C(45)	0.6824(9)	0.3006 (5)	0.6829(3)	$0.090(6)$
C(46)	0.7401(7)	0.3159(4)	0.6357(3)	0.068(4)
C(51)	$0.9290(5)$	0.2035(3)	0.5461(2)	0.044(3)
C(52)	0.9585(6)	$0.1675(3)$	0.6039 (3)	$0.062(4)$
C(53)	1.0533(8)	0.1116 (4)	0.6196(4)	$0.084(6)$
C(54)	1.1205(8)	0.0908(4)	0.5784(4)	0.081(5)
C(55)	1.0931(8)	0.1262(5)	0.5217(4)	0.094(6)
C(56)	0.9999(7)	0.1822(5)	0.5057(3)	0.083(5)
C(61)	0.8795(4)	$0.3753(3)$	0.5439 (2)	0.040(2)
C(62)	$0.9925(5)$	0.3804 (3)	0.5852(3)	0.050(3)
C(63)	1.0426 (6)	0.4565(4)	0.6020(3)	0.059(4)
C(64)	0.9848(6)	0.5266 (3)	0.5778(3)	0.057(3)
C(65)	0.8759(6)	0.5222(3)	0.5361(2)	0.056(3)
C(66)	0.8228(5)	0.4468 (3)	0.5190(2)	0.044(3)

TABLE 11. Atomic coordinates for $\mathrm{Os}\left(\mathrm{Ge}[p-t o l y I]_{3}\right) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6)

Atom	\boldsymbol{x}	y	z	$U_{\text {iso }}$
Os	0.08598(1)	0.00665(1)	0.23473(1)	0.03307(9)
Ge	$0.14037(3)$	$0.20960(3)$	$0.33360(2)$	0.0358(2)
P(1)	0.24006 (9)	-0.08162(9)	$0.27561(6)$	0.0363(4)
$\mathrm{P}(2)$	-0.04537(9)	-0.14449(9)	0.14012(6)	0.0382(5)
$\mathrm{Cl}(1)$	0.4341(2)	0.3814(3)	0.05547(18)	$0.171(2)$
$\mathrm{Cl}(2)$	0.5782(4)	0.3010(3)	0.1542(3)	0.254(5)
O(1)	-0.0460(3)	-0.0126(3)	0.3577(2)	$0.059(2)$
O(2)	0.2235(4)	0.0818(4)	0.1300(2)	0.097(3)
C(1)	0.0040(3)	-0.0074(3)	0.3119(2)	$0.039(2)$
C(2)	0.1707(4)	0.0504(4)	$0.1684(2)$	0.059(2)
C(3)	0.4510(17)	$0.2776(13)$	$0.1035(11)$	0.280(20)
C(11)	0.0077(3)	0.2899(3)	0.3436(2)	$0.041(2)$
C(12)	0.0231(3)	0.4043 (3)	0.3908(3)	$0.051(2)$
C(13)	-0.0658(4)	0.4648(4)	0.4026 (3)	0.057(2)
C(14)	-0.1743(4)	0.4132(4)	0.3694(3)	0.059(2)
C(15)	-0.1908(4)	0.3009(4)	0.3220 (3)	$0.065(3)$
C(16)	-0.1009(3)	0.2397(4)	0.3090 (3)	$0.055(2)$
C(17)	-0.2697(4)	$0.4800(5)$	0.3864(4)	$0.087(4)$
C(21)	0.1948(3)	0.2147(3)	0.4418(2)	$0.0364(19)$
C(22)	0.3057(3)	0.2119(3)	0.4725(2)	0.040(2)
C(23)	0.3371(3)	0.2034(3)	0.5443(2)	0.042(2)
C(24)	0.2589 (3)	0.1955(3)	0.5898 (2)	0.046(2)
C(25)	0.1490 (3)	0.2002(3)	0.5605(2)	0.050(2)
C(26)	$0.1172(3)$	0.2101(3)	0.4887(2)	0.043(2)
C(27)	0.2945(4)	0.1815(5)	0.6685(2)	0.068(3)
C(31)	0.2447(3)	0.3226(3)	0.3142(2)	0.044(2)
C(32)	0.2259(4)	0.3428(4)	0.2445(3)	0.063(3)
C(33)	0.2939(5)	0.4259(5)	0.2297(3)	0.075(3)
C(34)	$0.3850(4)$	0.4898(4)	0.2851(3)	0.066(3)
C(35)	0.4041(4)	0.4740(4)	0.3557(3)	0.059(2)
C(36)	$0.3340(3)$	0.3927(3)	0.3709(3)	0.053(2)
C(37)	0.4607(5)	0.5808(5)	0.2686(4)	0.094(4)
C(41)	0.3828(3)	$0.0123(3)$	$0.3247(20$	0.040(2)
C(42)	0.4455(3)	$-0.0100(4)$	0.3816 (2)	0.052(2)
C(43)	0.5474(4)	0.0587(4)	$0.4150(3)$	0.062(3)
C(44)	0.5796(4)	0.1502(5)	0.3908(3)	0.064(3)
$\mathrm{C}(45)$	0.5086(3)	0.1720(4)	0.3339(3)	0.055(2)
C(46)	0.4047(3)	0.1037(3)	0.3015(2)	0.044(2)
C(51)	0.2877(3)	-0.1867(3)	$0.1967(2)$	0.047(2)
C(52)	0.2134(4)	-0.2812(4)	$0.1459(3)$	0.058(2)
C(53)	0.2453(5)	-0.3569(5)	0.0845(3)	0.075(4)
C(54)	$0.3530(6)$	-0.3408(6)	0.0724(4)	0.091(4)
C(55)	0.4269(6)	-0.2506(6)	0.1217(4)	0.101(5)
C(56)	0.3954(5)	-0.1735(5)	0.1842 (3)	0.076(3)
C(61)	0.2190 (3)	-0.1559(3)	0.3452(2)	0.042(2)
C(62)	$0.1885(3)$	-0.0943(3)	0.4128(2)	$0.045(2)$
C(63)	0.1645(3)	-0.1462(4)	0.4657(2)	0.053(2)
C(64)	0.1716(4)	-0.2608(4)	0.4503(3)	0.067 (3)
C(65)	0.2031(4)	-0.3229(4)	0.3842 (3)	0.069(3)
C(66)	0.2270(4)	-0.2711(4)	0.3314(3)	0.055(2)
C(71)	-0.0142(4)	-0.2166(3)	0.0441(2)	$0.047(2)$
C(72)	0.0351(4)	-0.1464(4)	0.0081(3)	0.062(3)
C(73)	0.0586(5)	-0.1963(5)	-0.0662(3)	0.077(3)
C (74)	$0.0348(5)$	-0.3134(5)	-0.1022(3)	0.076(3)
C(75)	-0.0140(6)	$-0.3817(5)$	-0.0661(3)	0.077(3)
C(76)	-0.0400(5)	-0.3319(4)	0.0048(3)	0.066(3)

TABLE 11 (continued)

Atom	x	y	z	$U_{\text {iso }}$
$C(81)$	$-0.1031(3)$	$-0.2662(3)$	$0.1667(2)$	$0.045(2)$
$C(82)$	$-0.2063(4)$	$-0.3283(4)$	$0.1291(3)$	$0.057(2)$
$C(83)$	$-0.2479(5)$	$-0.4194(5)$	$0.1485(3)$	$0.070(3)$
$C(84)$	$-0.1871(5)$	$-0.4491(4)$	$0.2067(3)$	$0.071(3)$
$C(85)$	$-0.0847(5)$	$-0.3856(4)$	$0.2462(3)$	$0.051(3)$
$C(86)$	$-0.0444(4)$	$-0.2938(3)$	$0.2266(2)$	$0.048(2)$
$C(91)$	$-0.1767(3)$	$-0.0903(3)$	$0.1164(2)$	$0.074(3)$
$C(92)$	$-0.2150(5)$	$-0.0784(5)$	$0.0447(3)$	$0.095(5)$
$C(93)$	$-0.319(5)$	$-0.0290(6)$	$0.0340(4)$	$0.093(5)$
$C(94)$	$-0.3711(5)$	$0.0025(6)$	$0.0925(5)$	$0.076(4)$
$C(95)$	$-0.3344(5)$	$-0.0093(5)$	$0.1620(4)$	$0.062(3)$
$C(96)$	$-0.2369(4)$	$-0.0531(5)$	$0.1750(3)$	

tively and corresponding values for 6 are in Tables 6 and 11.

Acknowledgments

We thank the University of Auckland Research Committee for partial support of this work through grants-in-aid and the NZ University Grants Committee for the award of a Postdoctoral Fellowship to K.R.F.

References

1 K.M. Mackay and B.K. Nicholson, in G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 6, Pergamon, Oxford, 1982, p. 1043.
2 W. Petz, Chem. Rev., 86 (1986) 1019.
3 M.F. Lappert and R.S. Rowe, Coord. Chem. Rev., 100 (1990) 267.
4 B.J. Aylett, Organometallic Compounds, Part two: Groups IV and V, Chapman and Hall, London, 1979, p. 274.
5 M.L.H. Green, A.K. Hughes and P. Mountford, J. Chem. Soc., Dalton Trans., (1991) 1407.
6 H.-G. Woo, W.P. Freeman and T.D. Tilley, Organometallics, 11 (1992) 2198.

7 U. Schubert, S. Grubert, M. Schulz and S. Mock, Organometallics, 11 (1992) 3163.
8 S. Zhang and T.L. Brown, Organometallics, 11 (1992) 2122.
9 Y. Wakatsuki, H. Yamazaki, M. Nakano and Y. Yamamoto, J. Chem. Soc., Chem. Commun., (1991) 703.
10 D. Miguel, J.A. Pérez-Martínez, V. Riera and S. Garcia-Granda, Polyhedron, 10 (1991) 1717.
11 G.R. Clark, K.R. Flower, W.R. Roper and L.J. Wright, Organometallics, 12 (1993) 259.

12 G.R. Clark, C.E.F. Rickard, W.R. Roper, D.M. Salter and L.J. Wright, Pure Appl. Chem., 62 (1990) 1039.
13 C.E.F. Rickard, W.R. Roper, D.M. Salter and L.J. Wright, Organometallics, 11 (1992) 3931.
14 C.E.F. Rickard, W.R. Roper, D.M. Salter and L.J. Wright, J. Am. Chem. Soc., 114 (1992) 9682.
15 D.S. Bohle, G.R. Clark, C.E.F. Rickard, W.R. Roper and M.J. Taylor, J. Organomet. Chem., 348 (1988) 385.
16 U. Schubert, S. Gilbert and S. Mock, Chem. Ber., 125 (1992) 835.
17 R.D. Adams, J.E. Cortopassi and M.P. Pompeo, Inorg. Chem., 30 (1991) 2960.

18 B.F.G. Johnson, J. Lewis, M. Monari, D. Braga, F. Grepioni and C. Gradella, J. Chem. Soc., Dalton Trans., (1990) 2863.

19 F.W.B. Einstein, R.K. Pomeroy and A.C. Willis, J. Organomet. Chem., 311 (1986) 257.
20 L. Pauling, The Nature of the Chemical Bond, 2rd ed., Cornell University Press, Ithaca, New York, 1960.
21 T.J. Collins, K.R. Grundy and W.R. Roper, J. Organomet. Chem., 231 (1982) 161.
22 L. Vaska, J. Am. Chem., Soc., 86 (1964) 1943.
23 C.E.F. Rickard, W.R. Roper, G.E. Taylor, J.M. Waters and L.J. Wright J. Organomet. Chem., 389 (1990) 375.
24 D.M. Salter, PhD Thesis, University of Auckland, 1993.
25 S. Tannenbaum, S. Kaye and G.K. Lewenz, J. Am. Chem. Soc., 75 (1953) 3753.

26 O.H. Johnson, W.H. Nebergall and D.M. Harris, Inorg. Synth., 5 (1957) 76.

27 G.J.M. Van der Kerk, J.G. Noltes and J.G.A. Luijten, J. Appl. Chem., 7 (1957) 366.
28 A.E. Finholt, A.C. Bond Jr., K.E. Wilzbach and H.I. Schlesinger, J. Am. Chem. Soc., 69 (1947) 2692.

29 A.C. North, D.C. Phillips and F.S. Mathews, Acta. Crystallogr., Sect. A, 24 (1968) 351.
30 G.M. Sheldrick, shelx-76, Chemical Laboratory, Cambridge, UK, 1976.

31 International Tables for X-ray Crystallography, Vol. IV, Kynock Press, Birmingham, UK, 1974.

[^0]: Correspondence to: Professor W.R. Roper.

 * This paper is dedicated to Professor M.F. Lappert F.R.S. on the occasion of his 65th birthday.

[^1]: ${ }^{\mathrm{a}} \mathrm{In} \mathrm{cm}^{-1}$. Spectra recorded as Nujol mulls between KBr plates.
 ${ }^{\mathrm{b}}$ Bands associated with silyl groups. ${ }^{\text {c }}$ Band associated with p-tolyl group. ${ }^{\text {d }} \mathrm{Os}-\mathrm{H}$.

[^2]: ${ }^{\text {a }}$ Spectra recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. Chemical shifts (δ) are given in ppm and are referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta=0)$. Coupling constants (J) are in Hz . Splitting patterns are indicated thus: $\mathrm{d}=$ doublet, bs = broad singlet.

